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ABSTRACT 

A propuls ive wing/canard model has been tested a t  STOL operat ing condi t ions 
i n  the NASA Langley Research Center 4 x 7 meter wind tunnel. 
and l a t e r a l / d i  rec t iona l  aerodynamic charac ter is t i cs  were measured f o r  
various f l a p  def lect ions,  angles of at tack and s ides l ip ,  and blowing 
coef f i c ien ts .  Testing was conducted fo r  several model heights t o  determine 
ground prox imi ty  e f f e c t s  on the aeroenamic charac ter is t i cs .  Flow f i e l d  
surveys o f  l oca l  f low angles and ve loc i t ies  were performed behind both the  
canard and the wing. 

Longi tudinal  

This r e p o r t  cons is ts  o f  two volumes. Volume I (NASA CR-178348) describes 
the model, instrumentation, and t e s t  procedures; and includes an analys is  
o f  the data. Volume I1 (NASA CR-178349) contains a l l  o f  the t e s t  data i n  
three appendices. 
moment data, Appendix B presents tabulated wing pressure coef f i c ien ts ,  and 
Appendix C presents the f low f i e l d  data. 

Appendix A presents tabu1 ated s i x  component fo rce  and 
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SECTION 1 .O 

INTRODUCTION 

Design spec i f i ca t ions  f o r  future f ighters  may be expected t o  include STOL 
requirements. The a i r c r a f t  w i l l  undoubtedly have a low aspect r a t i o  wing, 
operate a t  high maneuvering load factors, and u t i l i z e  l ess  runway length  f o r  
take-of f  and landing as compared t o  contemporary f ighters .  
operating f i e l d  lengths are desired because o f  po ten t ia l  f i e l d  b a t t l e  damage 
o r  t o  provide the f l e x i b i l i t y  fo r  forward basing o f  the f i g h t e r  vehicle. 
Very h igh t h r u s t  t o  weight r a t i o s  w i l l  be requi red t o  achieve the desired 
maneuvering load fac to rs  and reduced f i e l d  lengths. I f  the t h r u s t  system 
can a lso be used t o  augment l i f t, then a s i g n i f i c a n t  l eve l  o f  STOL 
capabi 1 i ty may be generated. 

Reduced 

A propuls ive wing concept o f f e r s  the poten t ia l  f o r  producing la rge  
c i r c u l a t i o n  l i f t  coe f f i c i en ts  and also improving high speed f l i g h t  
character is t ics .  The propuls ive wing has been the subject  o f  numerous 
studies and the c a p a b i l i t i e s  and l i m i t a t i o n s  o f  propulsive l i f t  systems have 
been discussed. The add i t ion  o f  large amounts o f  blowing t o  the wing i s  
known t o  develop high c i r c u l a t i o n  lift coe f f i c i en ts  which are accompanied by 
s i g n i f i c a n t  leading edge down moments. A possible so lu t ion  t o  the nose down 
moment i s  t o  combine the propuls ive wing w i th  a propulsive canard. 
propul s i  ve w i  ng/canard concept provides the capabi 1 i ty t o  a t t a i n  1 arge 
aerodynamic l i f t  coe f f i c i en ts  as wel l  as the means t o  t r i m  the conf igura t ion  
a t  these h igh l i f t  coe f f i c i en ts .  

The 

References 1, 2 and 3 repo r t  on recent invest igat ions o f  propuls ive 
wing/canard concepts a t  STOL speeds, and References 4 and 5 describe the 
transonic charac ter is t i cs  o f  j e t  f laps. The t e s t  program reported i n  
Reference 1 invest igated the e f f e c t s  o f  r e l a t i v e  wing/canard placement and 
f l a p  nozzle span on the long i tud ina l  charac ter is t i cs  o f  a propuls ive 
w i  ng/canard f i g h t e r  configuration. The tes ts  described i n  t h i s  repor t  have 
continued the Reference 1 inves t iga t ion  t o  extend the propuls ive winghanard 
data base by measuring l a t e r a l / d i  rect ional  charac ter is t i cs  and ground 
prox imi ty  e f fects .  Wing surface pressures were recorded and loca l  f low 
charac ter is t i cs  were surveyed behind both the wing and canard. 

The e a r l i e r  model had a box-shaped fuselage t o  provide f l a t  sides f o r  the 
surface i n te rac t i on  stuQ. The f l a t  sides permit ted the r e l a t i v e  pos i t i on  
between the wing and canard t o  be eas i ly  changed, bu t  i t  was f e l t  t h a t  the 
unreal i s t i  c shape m i  ght have an adverse i nf l  uence on 1 a te ra l /d i  r e c t i  onal and 
ground e f f e c t s  data. A revised fuselage representat ive o f  a h igh t h r u s t  
f i g h t e r  conf igurat ion was fabr ica ted  t o  be compatible w i t h  the e x i s t i n g  wing 
and canard surfaces. A high canard/low wing placement was selected as the 
prefer red conf igurat ion based upon resul ts  o f  the previous STOL and 
transonic tests. 

1 



The revised model has been tested i n  the NASA 4 x 7 meter tunnel and the 
resu l t s  are compared w i t h  those from the e a r l i e r  model. The basic 
long i tud ina l  charac ter is t i cs  were r e l a t i v e l y  unchanged by the modif icat ion.  
The major object ives o f  the t e s t  w i t h  the rev ised fuselage were: 

(1  ) 

( 2 )  Obtain l a t e r a l / d i  rec t iona l  cha rac te r i s t i cs  

( 3 )  Measure ground e f f e c t s  

( 4 )  Conduct f low f i e l d  surveys 

Compare 1 ongi tud ina l  ax is  data w i t h  previous resul  t s  

2 



SECTION 2.0 

MODEL DESCRIPTION AND TEST PROCEDURE 

2.1 Model Descr ip t ion 

The propuls ive wing/canard model i s  a generic f i g h t e r  model w i t h  a low 
aspect r a t i o  wing and a canard t o  provide nose up t r i m  moments. The wing 
and the  canard each have blown t r a i l i n g  edge f laps.  The f l aps  are simple 
hinged and can be def lected from zero t o  s i x t y  degrees w i t h  blowing a t  a l l  
def lect ions.  The blowing j e t  nozzle i s  a s l o t  nozzle located a t  the unswept 
f l a p  hinge l i n e  ( the  80 percent loca l  chord pos i t ion) .  The wing tw is t ,  f i v e  
degrees o f  leading edge down t w i s t  a t  the wing t i p ,  a lso  occurs about the  
hinge l i ne .  The t w i s t  l i n e  was selected f o r  f a b r i c a t i o n  purposes and was 
n o t  expected t o  have an aerodynamic ef fect .  The model fuselage was designed 
such t h a t  the  canard could be tested i n  three pos i t i ons  and the  wing i n  two 
pos i t ions,  see Figure 1. Figures 1 and 2 present the model l ayou t  w i t h  
major dimensional data. Table 1 presents a tabu la t ion  o f  the  model geometry. 

The wing and canard o f  the model are superc r i t i ca l  a i r f o i l s  w f t h  a th ickness 
o f  6 percent o f  the  l o c a l  chord. The wing has a t w i s t  o f  -5 degrees about 
the f l a p  hinge l i n e  and the canard i s  untwisted, bu t  i s  fabr ica ted  t o  a l low 
va r iab le  incidence. 
approximately 0.6. The a i r f o i l  coordinates are presented i n  Table 2. The 
wing and the  canard panels a re  attached t o  the  fuselage by an a i r  p l u g  
located a t  the f i f t y -pe rcen t  r o o t  chord o f  each surface. The p lug 
arrangement a1 lows f o r  mounting, posi t ioning, and v a r i a t i o n  o f  canard 
incidence; and provides the means f o r  in t roducing h igh pressure a i r  t o  the 
wing and canard f o r  the  blowing nozzles. 
F igure 3. 

The a i r f o i l s  are designed f o r  a l i f t  c o e f f i c i e n t  of 

The p lug  and mounting are shown i n  

A i r  was supplied t o  the model through the NASA a i r  s t i n g  and i n t o  the  
fuselage center plenum a t  high pressure, approximately 400 PSIA. I ns ide  
the model the a i r  i s  ducted a t  high pressure t o  the i nd i v idua l  nozzles by 
the  tub ing arrangement shown i n  Figure 4. 
fabr ica ted  t o  provide a t o t a l  o f  s ix  separate nozzles. 
four  l i f t i n g  surfaces (two wings and two canards) two bottom fuselage 
nozzles are also avai lable.  
s imulate a t h r u s t  reverser and a RALS nozzle, b u t  they were no t  i n s t a l l e d  
f o r  the current  tests.  A i r  flow t o  each nozzle i s  regulated by a remotely 
c o n t r o l l e d  bar re l  valve located i n  each nozzle supply tube. 
and/or pressure r a t i o s  o f  the four  j e t s  are ad justable by means o f  the 
ba r re l  valves. 
through the contro l  valves and i n t o  the wing o r  canard through the mounting 
plugs. Ins ide  the  surface the spanwise d i s t r i b u t i o n  t o  each nozzle i s  
con t ro l l ed  by a ser ies o f  supply holes from the h igh pressure plenum. 
nozzle plenum i s  i n  t u r n  screened t o  b e t t e r  d i s t r i b u t e  the  f l ow  o u t  t he  
nozzle. Var ia t ions i n  ho le spacing and screening are u t i l i z e d  t o  con t ro l  
nozzle d i s t r i b u t i o n  f o r  each nozzle span conf igurat ion.  
i n t e r n a l  a i r  flow path o f  the model. 

The model, shown i n  Figure 4, was 
I n  add i t ion  t o  the  

The fuselage nozzles provide the c a p a b i l i t y  t o  

The t h r u s t  

The high pressure a i r  then f lows from the center plenum 

The 

Figure 5 shows the  

3 
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TABLE 1 MODEL GEOMETRY 

ITEM 

T ip  Chord 

Root Chord Exposed 

Root Chord BP=O 

Span Total 

Span Exposed 

Area Total  

Area Exposed 

Aspect Rat io Exposed 

Aspect Rat io  Tota l  

MAC Exposed 

MAC Tota l  

Body Length 

Body Width 

Body Height 

Sweep Leading Edge 

Taper Ra ti o 

WING 

13 In. 

40.12 In. 

46.41 In. 

61.60 In. 

50.00 In, 

12.71 F t?  

- 
- 

2.074 

- 
32.83 In. 

- 
- 
- 

41 Deg. 

.28 

5 

CANARD 

8.3 In. 

21.67 In. 

- 
- 

27.00 In. 

- 
2.812 F t ?  

1.80 

- 
16.0 In.  

- 
- 
- 
- 

38.3 Deg. 

.38 

BODY 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

116.52 In.  

11.60 In. 

20.00 In.  

- 
- 

VERTICAL 
TAIL 

4.25 In. 

19.50 In. 

- 
- 

15.20 In. 

- 
1.253 Ft? 

2.56 

- 
13.5 In. 

- 
- 
- 
- 

45 Deg. 

.22 



R A F  

TABLE 2 A I R F O I L  COORDINATES 

0 
.002 
.005 
.Ol 
.02 
.03 
.04 
.06 
.08 
.10 
.125 
.15 
.20 
.25 
.30 
.35 
.40 
.45 
.50 
.55 
.060 
.65 
.70 
.75 
.80 
.85 
.90 
.95 

1 .oo - 

WII 
NO OF 

Y/C" 

0 
.0046 
. 00 68 
.0093 
.0126 
,0153 
.0175 
.0212 
.0242 
.0264 
.0287 
.0305 
.0329 
.0342 
.0350 
.03548 
.0357 
.03575 
.03565 
.03535 
.03488 
.0342 
.0332 
.03165 
.029 
.02325 
,0173 
.00935 
0 

I P  

Y/C, 

0 
- .0044 
-. 00605 
- .0077 
-.0100 
-.0120 
-.0133 
-.0157 
-.0176 
-.0192 
-. 0208 
-.0222 
-. 0241 
-.0254 
-.0256 
- .02545 
-.0249 
-. 0241 
- .0230 
-.02175 
-.01945 
-.0165 
-.0126 
-.0081 
- .0028 
.002 

+.003 
+ .0008 
.004 

DROOP 

Y/CU 
- 

-.035 
- .0299 
-.0263 
-.0217 
-.0150 
- .0097 
-. 0051 
.0034 
.0107 
.0165 
.02235 

. .0267 
.0321 
.0342 
.0350 
.03548 
.0357 
.03575 
.03565 
.03535 
.03488 
.0342 
.0332 
.03165 
.0290 
.02325 
.0173 
.00935 
0 

L.E. RADIUS = .012 

WING ROOT INCIDENCE 0.0" 
WING T I P  INCIDENCE -5.0" 
TWIST ALONG X/C = 0.80 

6 

-.035 
- .0395 
-.04095 
- .0411 
-.0398 
- .0383 
- .0370 
- 0346 
-.0324 
- .0303 
- .0279 
-.0258 
-.0246 
-.0254 
-.0256 
-.02545 
- .0249 
-.0241 
-.0230 
-.02175 
- .01945 
-.0165 
-.0126 
-.0081 
- .0028 
+.002 
+.003 
+ .0008 
- .004 

CANARD 
NO DROOP 

Y/C" 

0 
.0046 
.0068 
.0093 
.0126 
.0153 
.0175 
-021 2 
.0242 
.0264 
.0287 
.0305 
.0329 
.0342 
.0350 
.0354 
.0357 
.03 58 
.0358 
.0358 
.0356 
.03535 
.0348 
.0340 
.0325 
.02325 
.0176 
.0112 
.004 

Y/C, 

0 
- .0044 
- .00605 
- .0077 
-.0100 
-.0120 
-.0133 
-.0157 
-.0176 
-.0192 
- .0208 
- .0222 
- .0241 
-.0254 
-.0256 
-. 02545 
-. 0249 
-.0241 
-.0230 
-.02175 
-.01945 
-.0165 
-.0126 
- .0081 
- .0028 
+.002 
+.003 
+. 0008 
-.004 

DROOP 

Y/CU 

-.025 
-.0195 
- -01 54 
- .01035 
-.003 

.0024 

.007 

.0142 

.01955 

.0235 

.0273 
-030 
.0329 
.0342 
.0350 
.0354 
.0357 
.0358 
.0358 
.0358 
.0356 
.03535 
.0348 
.0340 
.0325 
.02325 
.0176 
.0112 
,004 

Y/C, 

-.025 
-. 0295 
-.0311 
-. 0308 
- .029 
- .0278 
- .0266 
- .8249 
- . 0 2 X  
- .0226 
- .0220 
- .0224 
- .0241 
- -0254 
- .0256 
-.02545 
- .0249 
- .0241 
- .0230 
-.02175 
-.01945 
-.0165 
-.0126 
- .0081 
-.0028 
+.002 
+.003 
+. 0008 
- .004 



A I  R DUCT PLUG- 

Figure 3 Mounting Bracket and A i r  I n l e t  i n t o  Wing 
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1 L.H. WING VALVE 

1 FWD FUSELAGE NOZZLE 

'1 FWD FUSELAGE VALV 

I L.H. CANARD VALVE 7 I 1 

FWD - / R.H. CANARD 1 \ 
R.H. WING VALVE _I VALVE \ 

AFT FUSELAGE VALVE 1 1 AFT FUSELAGE NOZZLE 

Figure 4 Model I n t e r n a l  A i r  Ducting 



MODEL STATION 
37.00 ( .5  CR) 
POSITION 9 

MODEL STATION 
-80.94 ( . 5  CR) 
POSITION 8 

Figure 5 Air Flow Path 
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The nozzle spans may be var ied by adjust ing the  i n t e r n a l  f low passages t o  
cont ro l  the d i s t r i b u t i o n  and by c los ing  the  nozzle p l a t e  t i g h t l y  t o  the f l a p  
upper surface t o  obta in  the desired contour. 
w i  ng nozzle w i th  the nozzle ca l  i bra t ion  probes i n s t a l  led. 
removed a f t e r  ca l i b ra t i on  and p r i o r  t o  data gather ing runs. The t o t a l  
blowing a i r  quant i ty i s  measured p r i o r  t o  enter ing the  model. 
ind iv idua l  blowing on each surface i s  then computed by the pressure r a t i o  
and nozzle e x i t  area. 
manner may resu l t  i n  a force on the balance. 
ca l i b ra ted  w i t h  the a i r  s t i n g  i n  place and a pressure ta re  i s  used t o  
account f o r  the loads. The pressure ta re  i s  obtained by c los ing  the model 
f low e x i t s  and pressur iz ing the model and st ing.  

Figure 6 shows the half-span 
These probes are 

The 

High pressure a i r  introduced t o  the  model i n  t h i s  
The balance, therefore, i s  

During t e s t  the wing and canard placement on the fuselage was changed t o  
reduce the bal ance nose-down p i  t c h i  ng moment w i t h  the canard-off tests .  
This was done i n  order t o  increase the t e s t  speed envelope. The wing was 
moved from p lug 6 t o  p lug  8 and the canard f r o m  p lug  1 t o  p lug  9 which 
maintained the or ig ina l  r e l a t i v e  spacing o f  the  wing and canard. The 
moments were t ransferred t o  the leading edge o f  t he  wing mean aerodynamic 
chord (MAC) f o r  a l l  data reduction. The model designations referenced i n  
t h i s  repor t  i denti fy the model conf igurat ion;  i. e. , B2C9W8V means body 
number 2 ( t he  shaped body), canard located a t  p lug 9, wing located a t  p lug 
8, and v e r t i c a l  t a i l  included. 

2.2 Model I n s t a l  1 a t i  on 

The model was i n s t a l l e d  i n  the NASA 4 x 7 meter wind tunnel on a i r  s t i n g  
#l. The i n s t a l l a t i o n  o f  the model i s  seen i n  Figures 7 and 8. The model 
was sting-mounted w i t h  the high pressure blowing a i r  supplied through the 
a i r  sting. The tares due t o  the a i r  f low were minimized by a p ipe /co i l  
arrangement w i th in  the st ing.  Model he ight  i n  the tunnel and the model 
angle o f  a t tack were con t ro l l ed  through v e r t i c a l  and tilt motion o f  the  a f t  
s t ru t .  A i r  was supplied t o  the model through two f l e x i b l e  hoses which en ter  
the t e s t  section through the ve r t i ca l  s t r u t ,  e x i t  the  s t r u t  above the f l o o r  
and are ducted external ly  t o  the a i r  st ing.  One o f  the external  hoses can 
be seen i n  Figure 8. The second hose i s  on the opposite side o f  the st ing.  
A i  r f rom both hoses en ter  the s t i ng  through the "T" f i t t i n g  v i s i b l e  on top 
o f  the st ing. 

Weight tares and hose tares were required f o r  each model i n s t a l l a t i o n  and 
major conf igurat ion change. 
s t i n g  and ex i ted  the t e s t  sect ion through the s t ru t .  

Instrumentation w i  r i n g  was attached t o  the 

2.3 Model Instrumentation 

The model i n s t a l l a t i o n  incorporated the NASA a i r  s t i n g  #1 and a i r  s t a t i o n  
#3. 
prevent i c ing ,  and the associated a i r  f low measuring instrumentation. 
Addi ti onal model and tunnel i nstrumentati on i ncl uded a six-component force 
balance, wing surface s t a t i c  pressure instrumentation, i n te rna l  pressure 
measuring instrumentation, and a f low- f ie1 d survey rake. 

These provided the model w i t h  a dry a i r  supply heated s l i g h t l y  t o  

10 



Figure  6 Wing Half-Span Nozzle 
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Figure 7 Model Installed i n  NASA LaRC Tunnel -Flap Deflection of Zero Degrees 

Figure 8 Model Installed in NASA LaRC Tunnel-Flap Deflection of Forty Degrees 
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. . .. 

2.3.1 In te rna l  Force Balance 

The NASA six-component i n te rna l  balance 16218 was selected f o r  t h i s  t e s t  
based upon the  balance al lowable forces. 
p i t c h i n g  moment component of 10,000 inch-pounds, which was adequate f o r  most 
desired test ing.  The p i t c h i n g  moment could have been exceeded a t  one t e s t  
cond i t ion  (C, = 0.5) so the  tunnel dynamic pressure and nozzle t o t a l  
pressure were reduced s l i g h t l y  f o r  t h a t  condition. This d i d  no t  r e s u l t  i n  
any data l im i ta t i ons .  The balance ca l i b ra t i ons  u t i 1  i zed  standard NASA 
procedures. 

Balance 16218 i s  l i m i t e d  t o  a 

2.3.2 Wing Surface Pressures 

The model wing was instrumented wi th  f i v e  chordwise rows o f  pressure ports.  
The loca t ions  o f  the pressure por ts  are shown i n  F igure 9. The pressure 
po r t s  are connected through standard 0.06 inch  quick disconnects t o  ESP 
pressure recorders. The ESP recorders were connected t o  the  data system 
through a decis ion switch which permitted r e a l  t ime se lec t ion  o f  pressure 
measurements dur ing the  tes t .  

2.3. S In te rna l  Pressure Instrumentation 

Various pressure instrumentat ion was ava i lab le  w i t h i n  the model. The 
balance cav i t y  pressure and the model base pressure were measured and 
appl ied t o  the balance reading as corrections. 
measured a t  several i n t e r n a l  locations. Each plenum had a t o t a l  pressure 
gage which was used f o r  nozzle ca l ib ra t ion .  
t o t a l  pressure pickup which was used t o  interconnect w i t h  the  NASA a i r  
safety  system t o  assure t h a t  the model would n o t  be overpressurized. 

The a i r  f l ow  pressures were 

The main plenum also had a 

2.3.4 External F1 ow F i  e l  d Measuri ng Rake 

A NASA rake was used f o r  f low f i e l d  measurement. 
cons is ts  o f  seven five-hole, d i rec t i ona l l y  sens i t i ve  probes. 
located i n  a row and spaced two inches apart. 
behind the wing, as shown i n  Figure 10, f o r  most o f  t he  test ing.  
provides a v e r t i c a l  s l i c e  through the downwash a t  a p o s i t i o n  15 inches 
behind the  wing MAC, w i t h  the  top  probe located 4 inches above the wing 
chord plane. 

The NASA survey rake 

The rake was s t i n g  mounted 
The probes are 

The rake 

F igure 11 shows the rake i n s t a l l a t i o n  f o r  the  f low f i e l d  survey i n  the 
canard wake. The measurements were made a t  three l ong i tud ina l  loca t ions  a f t  
of the  canard i n  a f l o w  f i e l d  area extending 30 inches v e r t i c a l l y  ( 6  inches 
above t o  24 inches below the  canard) and 26 inches l a t e r a l l y  ( j u s t  outboard 
of the fuselage t o  wel l  outboard o f  the canard t i p ) .  The rake was mounted 
66 inches above the  f l o o r  and the  l a t e r a l  excursion was made by moving the 
rake i n  an inboard-outboard d i rec t ion  on i t s  mount. The NASA p i t c h  s t i n g  
apparatus was used t o  vary the model he ight  through the  v e r t i c a l  range o f  
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Figure 9 Wing Surface Pressure Tap Locations 
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Figure 10 Downwash Probe Installation 

Figure 11 Survey Rake Instal lation 
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the  survey area. 
movement o f  the model t h e  s t i n g  apparatus moves the  model along a l i n e  
i n c l i n e d  7.250 t o  the  v e r t i c a l .  
the survey area plane. 

I n  order  t o  maintain zero angle o f  a t tack w i t h  v e r t i c a l  

Th is  resu l ted  i n  a 7.250 i n c l i n a t i o n  o f  
Deta i led  probe loca t i ons  are i d e n t i f i e d  i n  Volume 11. 

2.4 Test Descr ip t ion 

This  t e s t  continued an e a r l i e r  i nves t i ga t i on  o f  the same wing and canard 
which had been mounted on a rectangular fuselage 
rectangular fuselage was designed such t h a t  the wing and canard r e l a t i v e  
placement could be var ied  t o  inves t iga te  canard in te r fe rence ef fects on the 
wing. Several ob ject ives o f  t h a t  study were no t  completed due t o  t ime 
l i m i t a t i o n s  and the  unknown e f f e c t s  o f  the  rectangular  fuselage. 
canard/wing placement was selected based on the o r i g i n a l  t e s t i n g  and a 
rev ised fuselage s imulat ing a low aspect r a t i o ,  h igh  power i n s t a l l a t i o n  
f i g h t e r  was fabricated. 
complete the  object ives o f  the  Reference 1 i nves t i ga t i on  and t o  t e s t  those 
conf igurat ions and concepts which may have been a f fec ted  by the rectangular  
f use l  age shape. 

(Reference 1). The 

A r e l a t i v e  

The purpose o f  t h i s  t e s t  was, therefore, t o  

The major areas o f  i nves t i ga t i on  i n  t h i s  t e s t  program were: 

Longi tudinal  Character ist ics:  The p i t c h  cha rac te r i s t i cs  o f  t he  propuls ive 
wing/canard were invest igated t o  determine the e f f e c t s  o f  the shaped body. 
Conf i  gu ra t i  ons f r o m  the  previous t e s t  which were repeated i ncl  uded t h e  
p a r t i a l  span nozzles on the wing. 
degrees was tested f o r  the  f i r s t  time. 

An intermediate f l a p  de f l ec t i on  o f  30 

Latera l  / D i  rect ional  Character is t ics :  This data was measured t o  provide 
informat ion on low aspect r a t i o  f i g h t e r  conf igurat ions w i t h  powered l i f t .  
The small amount o f  data ava i lab le  per ta ins t o  h igh aspect r a t i o  t ranspor t  
conf igurat ions.  

Ground Effects:  
1 im i ted  t o  high aspect r a t i o  conf igurat ions.  

Ground e f f e c t s  data f o r  STOL vehic les i s  a lso  cu r ren t l y  

Wing/Canard Flow Fie ld :  
ser ies because o f  t e s t  t ime l im i ta t i ons .  

This data was no t  taken dur ing the f i r s t  t e s t  
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2i4.1 Force and Moment Tests 

The model was tested f o r  the range o f  var iab les shown i n  Table 3: 

TABLE 3 TEST VARIABLES 

0, 0.5, 1.0, 2.0, 4.0, 8.0 

0, 0.25, 0.5, 1.0, 2.0, 4.0 

0, 0.75, 1.5, 3.0, 6.0, 12.0 

ch 

c, c 

c ,  T 

h/c 0.5, 1.0, 2.0, f ree  a i r  

8F 0, 15, 30, 45 degrees 

a -2 t o  22 degrees 

P -15 t o  15 degrees 

Force and moment data were recorded f o r  the  f u l l  range o f  var iab les shown i n  
Table 3. The tes ts  were made w i th  the  model loca ted  as near t o  the  center  
o f  the t e s t  sect ion as poss ib le  f o r  a l l  t e s t s  except the ground e f f e c t s  
tests.  As the model i s  yawed the  tunnel s t i n g  moves the  whole assembly and 
a t  p i t c h  angles above approximately 18 degrees the model p i t c h  system can no 
longer maintain the  model i n  the tunnel center. The excursions f r o m  t h e  
tunnel center are n o t  large, however, and do n o t  in f luence the t e s t  
resu l ts .  Wing s t a t i c  pressures were a lso recorded dur ing the fo rce  t e s t s  
f o r  appropr iate p i t c h  runs. The pressure data were recorded by ESP pressure 
sensors. 

2.4.2 Ground Prox imi ty  Tests 

Ground prox imi ty  e f f e c t s  were measured f o r  several conditions. Most 
measurements were taken w i t h  the  ground b e l t  s ta t ionary  due t o  a b e l t  d r i v e  
fa i l u re .  
above the  f l o o r  f o r  several f i xed  conditions. The t e s t  procedure was t o  se t  
the desired condition; i.e., conf igurat ion,  angle o f  at tack,  blowing 
coe f f i c i en t ,  and f l a p  def lect ion,  and t o  record data f o r  several model 
heights above the tunnel f loor .  Tunnel f l o o r  boundary removal b leed was on 
f o r  these tes ts  except f o r  an inves t iga t ion  o f  boundary l a y e r  e f fec ts .  

The model forces and pressures were recorded a t  var ious heights  
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2.4.3 Flow F i  e l  d Surveys 

The f low f i e l d  was surveyed behind the wing and behind the canard. The f l ow  
f i e l d  measurements behind t h e  wing consisted o f  measurement o f  a v e r t i c a l  
s l i c e  one-half chord length  behind the wing t r a i l i n g  edge. The seven probe 
rake used provided a v e r t i c a l  f l ow  measurement from 4 inches above the  wing 
t o  e i g h t  inches below the wing plane. These data are ava i l ab le  f o r  a l l  
pressure recorded data points .  
measured a t  three loca t ions  a f t  o f  the canard t r a i l i n g  edge. 
l ong i tud ina l  s ta t i on  a f l ow  area o f  approximately 30 inches h igh by 24 
inches wide was measured. 

The f l ow  f i e l d  behind the  canard was 
A t  each 

2.5 Data Reduction 

The data reduction procedures used i n  the propuls ive wing/canard t e s t  were 
standard tunnel procedures except f o r  special cases per ta in ing  t o  nozzle 
blowing. Special treatment was requi red f o r  c a l c u l a t i n g  the blowing 
c o e f f i c i e n t  (C, 1 and f o r  removing the  blowing t h r u s t  e f f e c t  i n  determining 
c i r c u l a t i o n  l i f t  and o ther  aerodynamic coe f f i c i en ts .  

2.5.1 General Discussion 

The overa l l  force data were recorded by a s i x  component i n te rna l  balance. 
The data have been reduced i n  the  standard manner t o  both body and s t a b i l i t y  
a x i s  coef f ic ients  w i t h  t o t a l  wing geometry u t i 1  i zed  f o r  reference 
dimensions. 
u t i l i z i n g  f ree stream dynamic pressure as the  reference. 
survey and the downwash probe data are reduced t o  l o c a l  v e l o c i t y  
and f low angles (alpha and beta) by the NASA probe ca l  i b r a t i o n  program. 

Wing surface pressures are converted t o  pressure c o e f f i c i e n t s  
The f low f i e l d  

2.5.2 B1 owi na Coe f f i c i en t  

The propulsive wing/canard model used i n  t h i s  t e s t  had four  separate 
nozzles; i. e., r i g h t  and l e f t  canard nozzles and r i g h t  and l e f t  wing 
nozzles. The a i r  was suppl ied t o  the model through a common, h igh pressure 
p ipe and d i s t r i bu ted  t o  each nozzle as described i n  Section 2.1. The nozzle 
areas were preset t o  provide a balanced f low a t  a balanced pressure r a t i o .  
The actual  ind iv idua l  nozzle blowing c o e f f i c i e n t  was computed based on the  
preset nozzle area and the  average nozzle t o t a l  pressure. The nozzle 
spanwise f l ow  d i s t r i b u t i o n  was c r i t i c a l  f o r  the  data reduct ion methods 
used. The f l o w  d i s t r i b u t i o n  was con t ro l l ed  as discussed i n  Section 2.1 by 
valves, f l ow  passages and screens. The nozzle pressure r a t i o  balance 
between the four nozzles was a t ta ined by use o f  the c a l i b r a t i o n  probes shown 
i n  Figure 6. The c a l i b r a t i o n  probes were used t o  determine the  nozzle 
average pressure referenced t o  an upstream pressure source. The probes were 
removed during test ing.  

The model blowing c o e f f i c i e n t  i s  computed, as described i n  Reference 6, by: 

c,  = lil vj/qs 
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2; 5.3 Thrust Removed Aerodynamic Coef f i c ien ts  

Blowing on the l i f t i n g  surfaces produces two fo rce  changes, one o f  which i s  
the  d i r e c t  t h r u s t  vector o f  t he  nozzle. The t h r u s t  produces a l i f t  fo rce  
and a drag force equal t o  the  appropriate component o f  the  t h r u s t  vector. 
The t h r u s t  a lso produces a moment which i s  equal t o  the  product o f  t h e  
t h r u s t  and the moment arm o f  the j e t .  The second fo rce  change'produced by 
blowing i s  an e f f e c t  on the  aerodynamic forces o f  t he  conf igurat ion.  
Blowing e f fec ts  the l i f t  c o e f f i c i e n t  by a l t e r i n g  the  c i r c u l a t i o n  o f  the  f l ow  
f i e l d .  
coeff ic ients.  
wing/canard conf igurat ions requires t h a t  the  ove ra l l  forces be converted 
i n t o  d i r e c t  t h r u s t  c o e f f i c i e n t s  and induced, o r  pure ly  aerodynamic, forces. 
For t h i s  inves t iga t ion  the  aerodynamic data were ca lcu la ted  by removi ng the  
t h r u s t  vector from the balance recorded data and computing the aerodynamic 
( t h r u s t  removed) data i n  the  same way t h a t  the  t o t a l  c o e f f i c i e n t s  are 
normally computed. 
scrubbing drag o f  t he  j e t  and only assumes t h a t  the  j e t  attachment i s  
unaffected by the external  airstream. 

This a lso  changes the  p i tch ing  moment and induced drag 
The analys is  o f  the propuls ive wing and propuls ive 

This method accounts f o r  the  nozzle e f f i c i e n c y  and 
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3.0 SUMARY OF TEST RESULTS 

The data presented and discussed here provides an extension o f  the data base 
f o r  powered-wing f i g h t e r  a i r c r a f t .  The previous data base on powered 
conf igurat ions was general ly 1 i m i  t e d  t o  h i  gher aspect r a t i o s  and t o  speci fi c 
conf igurat ions and s p e c i f i c  t e s t  objectives. This t e s t  and t h a t  o f  
Reference 1 represent a generic approach t o  the  subject  o f  powered-wing 
f i g h t e r  conf igurat ions.  Reference 1 inves t iga ted  the  e f f e c t s  o f  r e l a t i v e  
winghanard placement and f l a p  nozzle span on long i tud ina l  e f f e c t s  o f  the 
propul s i  ve wingkanard. Longitudinal data i s  a1 so presented here, and 
l a t e r a l / d i  rec t iona l  and f l ow  f i e l d  charac ter is t i cs  are included. The 
i n f  1 uence o f  ground prox imi ty  on longi tud ina l  cha rac te r i s t i cs  i s  discussed. 
The moving ground board was n o t  avai lable f o r  most o f  the  t e s t i n g  o f  the 
propul s i  ve w i  ng/canard model. 

3.1 Longitudinal Character ist ics 

The propuls ive wing/canard concept evolved i n  an e f f o r t  t o  provide a powered 
w i  ng conf i  gurat ion which coul d be trimned w i thout  t he  1 i f t  1 oss associated 
w i t h  conventional t a i l  t r i m .  The loss i n  trimmed l i f t  i s  p a r t i c u l a r l y  great  
w i t h  a powered wing which produces large nose down moments because o f  t he  
a f t  l oca t i on  o f  the f lap.  A canard conf igurat ion contr ibutes forward l i f t  
which provides nose up t r i m  w i t h  a posi ti ve l i f t. The canard a lso produces 
la rge  downwash angles ahead o f  the wing, however, which reduce the wing l i f t  
and increase drag by t i l t i n g  the  wing normal f o rce  vector a f t .  

3.1.1 W i ng -Body 

The aerodynamic cha rac te r i s t i cs  o f  the propuls ive wing are dominated by 
l a rge  l i f t  coe f f i c i en ts  and la rge  nose down p i t c h i n g  moment coef f i c ien ts .  
The l i f t ,  drag, and p i t ch ing  moment coe f f i c i en ts  o f  the wing-body 
combination a t  f l a p  de f lec t ions  o f  0, 15, 30, and 45 degrees are presented 
i n  Figures 12 through 15, respectively. Blowing a t  the f l a p  knee increases 
the  lift c o e f f i c i e n t  a t  a l l  conditions and angles tested. A t  zero f l a p  
de f l ec t i on  there i s  an increase i n  l ift a t  zero angle o f  a t tack  as we l l  as 
a t  p o s i t i v e  angles o f  attack. The lift increase due t o  blowing a t  zero 
angle o f  a t tack and zero f l a p  de f lec t ion  i s  the r e s u l t  o f  surface camber and 
an upper surface angle o f  approximately 10 degrees on the t r a i l i n g  edge 
f lap.  The to ta l ,  o r  t h r u s t  included, aerodynamic c o e f f i c i e n t s  are presented 
i n  Figures 12a, 13a, 14a, and 15a f o r  each f l a p  de f l ec t i on  whi le  the t h r u s t  
removed coef f ic ients  are presented i n  the accompanying Figures 12b, 13b, 
14b, and 15b. A s i g n i f i c a n t  c i r c u l a t i o n  can be seen on the airplane. 

The e f f e c t  o f  the blowing c o e f f i c i e n t  on the l i f t  c o e f f i c i e n t  can be seen 
i n  Figures 16 and 17. Figure 16 compares the t o t a l  wing-body l i f t  curve 
slope t o  the t h r u s t  removed l i f t  curve slope. 
(aerodynamic o r  c i r c u l a t i o n )  l i f t  curve slope i s  increased by 50% due t o  the 

The t h r u s t  removed 
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blowing. 
coe f f i c ien ts  o f  2.0 f o r  the  undef lected f l a p  conf igurat ion.  
presents the va r ia t i on  of l i f t  c o e f f i c i e n t  w i t h  blowing c o e f f i c i e n t  f o r  
several f l a p  def lect ions.  The r e s u l t s  i n d i c a t e  l a r g e  increases i n  the  l i f t  
c o e f f i c i e n t  as the blowing i s  increased. 
o f  l i f t  c o e f f i c i e n t  due t o  f l a p  de f lec t ion  w i t h  t h a t  due t o  angle o f  a t tack  
fo r  a constant blowing coe f f i c i en t .  These data show t h a t  the l i f t  v a r i a t i o n  
w i t h  f l a p  de f lec t ion  i s  near ly  the  same as w i t h  angle o f  a t tack  except a t  a 
f l ap  de f lec t ion  of 45 degrees where the angle o f  a t tack v a r i a t i o n  appears t o  
be higher. The cond i t ion  o f  

The data show t h a t  the l i f t  curve slope i s  doubled a t  blowing 
Figure 17 

Figure 18 presents a comparison 

was no t  expected because o f  the r e l a t i v e l y  shor t  chord f l a p  on the 
propuls ive wing model. The l i f t  cha rac te r i s t i cs  a re  apparently dominated by 
the t h r u s t  vector add i t ion  t o  the l i f t  c o e f f i c i e n t  and the e f f e c t  o f  blowing 
on the  c i r c u l a t i o n  l i f t .  

The e f f e c t  o f  the span o f  the blowing p o r t i o n  o f  the f l a p  was a lso  
invest igated. Figure 19 presents the l ong i tud ina l  ax i s  data f o r  t he  
quarter-span nozzle and Figure 20 presents the same data f o r  the hal f -span 
nozzle tests.  The data i nd i ca te  that  the  l i f t  c o e f f i c i e n t  decreases as the  
span o f  the blown sec t ion  i s  reduced. F igure 21 presents the v a r i a t i o n  o f  
t h e  t h r u s t  removed l i f t  c o e f f i c i e n t  f o r  the  quarter, h a l f ,  and fu l l - span  
nozzles w i t h  the c o e f f i c i e n t s  based on the blown wing area. 
show t h a t  a t  zero angle o f  attack, a t  leas t ,  t he  data co r re la te  when based 
on the blown wing area and referenced t o  a blowing c o e f f i c i e n t  based on the  
same area. 
rectangular fuselage and w i t h  a r o o t  chord incidence o f  f o u r  degrees showed 
a s i m i l a r  co r re la t i on  when the  wing incidence was proper ly  considered. 
Since the  f l a p  de f l ec t i on  l i f t  f o r  each o f  the two models i s  approximately 
the  same a t  the same wing angle o f  a t tack t h e  fuselage shape change does n o t  
appear t o  have a f fec ted  the f l a p  charac ter is t i cs .  

The r e s u l t s  

The data prev ious ly  obtained on t h i s  propuls ive wing w i t h  a 

The previous tes ts  o f  t h i s  propul s i  ve wing conf igura t ion  i n  February 1985 
demonstrated maximum 1 i f t  c o e f f i c i e n t s  which approached 1.9 times the wing 
aspect r a t i o .  It has been suggested t h a t  t he  square fuselage tes ted  a t  t h a t  
t ime may have cont r ibu ted  t o  the  high maximum c i r c u l a t i o n  l i f t  c o e f f i c i e n t s  
at ta ined. The r e s u l t s  o f  the  l a t e s t  t e s t  w i t h  the  shaped fuselage i s  
compared t o  previous r e s u l t s  i n  Figure 22. As seen, the  maximum 1 i f t  
c o e f f i c i e n t  wi th the shaped fuselage i s  a t  l e a s t  as h igh as t h a t  o f  t he  
previous tests. 
a t ta inab le  c i r c u l a t i o n  l i f t  c o e f f i c i e n t  can approach 1.9 times the wing 
aspect r a t i o .  The maximum c i r c u l a t i o n  l i f t  c o e f f i c i e n t  from the shaped 
fuselage t e s t  was reached a t  a higher blowing c o e f f i c i e n t  than t h a t  requi red 
f o r  the rectangular fuselage tests .  The maximum l i f t  c o e f f i c i e n t  was 
a t ta ined  a t  the most extreme condi t ions tested, see Figure 15. 

This t e s t  data appears t o  conf i rm t h a t  the maximum 
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l i f t  curve slope i s  ind ica ted  a t  t h a t  condi t ion conf i rming t h a t  the wing 
incidence reduction d i d  a f f e c t  the maximum a t ta ined  l i f t  condit ion. The 
ef fect  o f  fuselage endplat ing on the f l a p  cannot be determined from the 
avai 1 ab1 e data. 

3.1.2 Wing -Body -Canard 

The la rge  p i tch ing moment coef f i c ien t  developed by blowing on the f l a p  o f  
the propuls i  ve wing requi res a nose up p i t ch ing  moment t o  balance the 
airplane. An a f t  t a i l  w i l l  provide p i t c h  t r i m  by imposing a down load a t  
the t a i l  surface thus r e s u l t i n g  i n  an overa l l  l i f t  loss. An a l t e r n a t i v e  t o  
the a f t  t a i l  i s  the use o f  a blown canard which provides a cont ro l  surface 
located forward o f  the center of gravity. The p o s i t i v e  p i t ch ing  moment 
requi red fo r  t r i m  i s  then provided w i t h  a p o s i t i v e  lift. The canard, 
however, produces a la rge  downwash angle on the inboard wing sections 
thereby detracting from the pos i t i ve  benef i ts  o f  the forward cont ro l  surface. 

Most canard development s tud ies have concluded t h a t  a canard located high 
and close-coupled r e l a t i v e  t o  the wing i s  preferred. A program devoted t o  
development o f  a V/STOL augmenter wing and canard ("XFV-12A V/STOL Fighter  
Attack Technology Prototype Program", Contract NO001 9-73-C-0053, Rockwell 
Unpublished Data) concluded, however, t h a t  the canard shoul d be located 
below the wing plane. 
References 1 and 4, have provided informat ion which a ids i n  understanding 
the canard in te rac t ion  w i t h  the wing. Reference 1 provided an i n i t i a l  
i n s i g h t  i n t o  canard/wing r e l a t i v e  pos i t ions  f o r  STOL f l a p  def lect ions.  
Reference 4 pr imar i l y  inves t iga ted  the high speed cha rac te r i s t i cs  o f  the j e t  
f lap, bu t  also provided some informat ion on r e l a t i v e  canard/wing placement 
f o r  low f l a p  deflect ions. 

This inves t iga t ion  and two previous studies, 

The downwash and j e t  sheet def lected from the t r a i l i n g  edge o f  a propuls ive 
canard combine to  produce an e f f e c t  on the wing which i s  cond i t ion  
dependent. The studies mentioned above ind i ca te  t h a t  a h igh canard i s  
prefer red a t  cruise and takeof f  f l a p  def lect ions o f  l ess  than 15 t o  20 
degrees. 
than 30 degrees) a low canard i s  more advantageous. 
ca lcu lated j e t  path f o r  several canard f l a p  def lect ions.  
f o r  the model used i n  t h i s  inves t iga t ion  i s  shown i n  the f i gu re  f o r  
discussion purposes. For j e t  de f lec t ion  angles o f  greater  than 15 degrees 
the  j e t  i s  shown t o  pass below the wing creat ing a l a rge  downwash angle on 
the wing. In addition, the j e t  passing i n  f r o n t  o f  and below the wing acts  
as a blockage t o  the a i r f l o w  a t  the wing leading edge. Figure 24 presents 
the measured local  f low angles o f  the canard w i t h  the canard f l a p  de f lec ted  
45 degrees. The inboard s t a t i o n  shows r e l a t i v e l y  la rge  downwash angles and 
r e l a t i v e l y  constant j e t  v e l o c i t i e s  outside the j e t .  The outboard s ta t ion ,  
BP12, i n  addition, shows the t i p  vortex effects c a r r i e d  inboard o f  the 
canard t i p .  These data i nd i ca te  the j e t  sheet t o  be def lected s l i g h t l y  more 
than calculated. The ca lcu lated j e t  sheet path shown i n  Figure 23 ind ica tes  
t h a t  a t  canard f l ap  de f lec t ions  o f  l ess  than 15 degrees the j e t  passes over 
the wing leading edge and i n  f a c t  may impinge on the a f t  wing chord t o  
produce a benefici  a1 upper surface blowing ef fect .  

A t  t he  l a r g e r  f l a p  def lect ions requi red f o r  STOL landing (g rea ter  
Figure 23 presents the 

The wing p o s i t i o n  
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The previous studies conducted on the propuls ive wing/canard have suggested 
t h a t  t he  high canard may be the  best compromise f o r  t he  overa l l  missions o f  
a STOL f i g h t e r  wing/canard conf igurat ion.  The canard was located i n  the 
h igh  p o s i t i o n  fo r  a l l  data presented i n  t h i s  report .  

The long i tud ina l  Character is t ics  o f  the propuls ive wing/canard model are 
presented i n  Figures 25 through 28 f o r  f l a p  de f lec t ions  o f  0, 15, 30, and 45 
degrees, respect ively.  The charac ter is t i cs  are we1 1 behaved f o r  most 1 eve1 s 
o f  blowing c o e f f i c i e n t  except f o r  the very h igh blowing ra tes  and l a r g e  
def lect ions.  The data show considerable s c a t t e r  a t  very h.igh blowing 
coe f f i c i en ts ,  greater than 10.0. 
r e s u l t  o f  var ia t ions  i n  the th rus t  c o e f f i c i e n t  magnified by the low dynamic 
pressure. 
t h r u s t  removed coef f i c ien ts .  The t h r u s t  removed 1 i f t  and drag c o e f f i c i e n t s  
a l so  show the  in te r fe rence e f fec ts  which are apparent w i t h  the  canard 
conf igurat ion.  

It appears t h a t  t h i s  data sca t te r  i s  the  

These va r ia t i ons  can mostly be e l iminated by u t i l i z a t i o n  o f  t h e  

A t  blowing c o e f f i c i e n t s  o f  three o r  l ess  the cha rac te r i s t i cs  e x h i b i t  the  
expected var ia t ions  w i t h  a t t i t ude .  However, a t  the  higher blowing 
c o e f f i c i e n t s  the l ong i tud ina l  charac ter is t i cs  e x h i b i t  separation tendencies 
which are  re f l ec ted  i n  nonl inear l i f t, drag, and p i t c h i n g  moment. These 
h igh blowing coe f f i c i en ts  occur a t  on ly  very slow speeds when the use o f  
power cont ro ls  may be requi red and such cha rac te r i s t i cs  may be acceptable. 

Figure 25 presents the l i f t  charac ter is t i cs  o f  the canard and wing a t  a 
blowing c o e f f i c i e n t  o f  2.0 and a f l a p  d e f l e c t i o n  o f  45 degrees. 
canard-on l i f t  c o e f f i c i e n t  i s  approximately the same as the wing-alone l i f t  
c o e f f i c i e n t  wh i le  the t h r u s t  removed l i f t  c o e f f i c i e n t  i s  a c t u a l l y  reduced. 

The 

F igure 30 presents the 1 i f t  coe f f i c i en t  requi red and blowing c o e f f i c i e n t  
ava i l ab le  f o r  a weight and t h r u s t  t y p i c a l  f o r  t h e  landing conf igura t ion  o f  a 
wing/canard f i gh te r .  The l i f t  coe f f i c i en ts  ava i lab le  from the wing/canard 
conf igura t ion  a t  wing and canard f l a p  de f lec t ions  o f  30 and 45 degrees are 
a lso presented on Figure 30. These untrimned data show t h a t  i f  t r i m  can be 
provided wi thout  l o s i n g  l i f t ,  the  l i f t  c o e f f i c i e n t  f o r  t he  conf igura t ion  i s  
s u f f i c i e n t  t o  f l y  a t  40 knots and 57 knots w i t h  45 and 30 degrees f l a p  
def 1 ec t i on, respect i  vely . 
Providing s u f f i c i e n t  t r i m  f o r  the propuls ive wing canard i s  somewhat 
a l l e v i a t e d  by the  forward l oca t i on  of the canard. However, i f  the t h r u s t  
s p l i t  o f  33% f o r  the canard and 67% fo r  the wing i s  maintained the canard 
w i l l  no t  provide s u f f i c i e n t  nose-up p i t c h  t o  t r i m  w i t h  the  center  o f  g r a v i t y  
a t  the leading edge o f  the mean aerodynamic chord, as requi red f o r  a 
wingkanard conf igurat ion.  Trimming i s  a d d i t i o n a l l y  complicated by canard 
in te r fe rence e f f e c t s  on the  wing, as discussed above. Figures 31 t o  34 show 
the  e f f e c t  o f  canard in ter ference as the  de f l ec t i on  i s  increased. These 
f igures  present the l i f t ,  drag, and p i t ch ing  moment c o e f f i c i e n t s  f o r  the  
wing f l a p  de f l ec t i on  a t  30 degrees and the  canard f l a p  a t  45, 30, and 
canard-off condi t ions and several blowing coe f f i c i en ts .  
increase i n  nose up moment as the  canard f l ap  de f lec t ion  i s  changed from 30 
t o  45 degrees. The add i t iona l  l i f t  and t h r u s t  forward o f  the center o f  

The data show an 
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g r a v i t y  produce t h i s  moment, however, the in te r fe rence o f  the increased 
canard f l a p  de f lec t ion  on the  wing produces a s i zab le  l o s s  i n  l i f t  
c o e f f i c i e n t  compared t o  the lower canard f l a p  de f lec t ion .  The data show a 
p o s i t i v e  increment i n  l i f t for  t he  45 degree canard f l a p  and 30 degree wing 
flap, as opposed t o  the essen t ia l l y  zero l i f t  increment discussed f o r  the 45 
degree wing f l a p  configuration. The d i f f e r e n t  wing c i r c u l a t i o n  accounts f o r  
the d i f f e r e n t  induced e f fec ts .  

3.1.3 Propuls ive Conf igurat ion Concept 

The long i tud ina l  cha rac te r i s t i cs  o f  the propuls ive wing concept suggest t h a t  
a three-surface a i rp lane conf igurat ion w i t h  a blown wing, blown canard and 
hor izonta l  t a i l  may be the most appropr iate concept f o r  a STOL f i gh te r .  A 
three-surface concept a l lows the  center o f  g r a v i t y  t o  be moved a f t  and 
reduces the canard f l a p  de f l ec t i on  requi red t o  t r i m  the vehicle. 
addi t ion,  the canard o f  the  three-surface conf igura t ion  w i l l  no t  requ i re  as 
much load input  f o r  h igh speed condi t ions and, therefore, may be pos i t ioned 
lower r e l a t i v e  t o  the  wing. 
j e t  sheet t o  pass f u r t h e r  below the wing and decrease in te r fe rence e f fec ts .  
A l ternate ly ,  i f  the canard can be ra ised above i t s  cu r ren t  water plane or  
can be moved nearer t o  the wing leading edge i t  may be poss ib le  t o  extend 
the  f l ap  def lect ion a t  which an upper surface blowing e f f e c t  i s  real ized. 

I n  

Locating the  canard lower w i l l  a l low the canard 

3.2 Latera l  / D i  rec t iona l  Charac ter is t i cs  

The 1 a te ra l /d i  rec t i ona l  charac ter is t i cs  of the  propul s i  ve w i  ng/canard model 
were invest igated a t  f l a p  de f lec t ions  o f  zero and f o r t y - f i v e  degrees. 
shaped fuselage model u t i l i z e d  an e x i s t i n g  v e r t i c a l  t a i l  which was 
o r i g i n a l l y  sized f o r  a conventional w ing- ta i l  conf igurat ion.  This resu l ted  
i n  an unstable total conf igura t ion  because o f  t he  a f t  center  o f  g r a v i t y  
locat ion.  While t h i s  cond i t ion  i s  unsat is fac to ry  f o r  an a i rp lane 
conf igura t ion  the  t e s t  r e s u l t s  and conclusions regarding incremental e f f e c t s  
r e s u l t i n g  from the canard and blowing are va l id .  

The 

3.2.1 E f f e c t  o f  Blowing 

The e f f e c t s  o f  f lap blowing on l a t e r a l / d i r e c t i o n a l  cha rac te r i s t i cs  can be 
a t t r i b u t e d  t o  several aspects o f  blowing. A s i g n i f i c a n t  increase i n  l i f t  
c o e f f i c i e n t  i s  experienced w i t h  blowing a t  any selected angle o f  at tack.  
bihile some e f f e c t  on l a t e r a l / d i  rec t iona l  s t a b i l i t y  has normally been 
observed as l i f t  c o e f f i c i e n t  has been increased through angle o f  a t tack  
Sncreases, the increase o f  l i f t  c o e f f i c i e n t  due t o  blowing tends t o  r e s u l t  
i n  a t rans la t i on  of l a te ra l /d i rec t i ona l  cha rac te r i s t i cs  w i t h  1 i f t  
c o e f f i c i e n t  ra ther  than the expected cont inuat ion o f  t he  parameter slopes as 
l i f t  increases. Figure 35 presents the l a t e r a l / d i r e c t i o n a l  s t a b i l i t y  
parameters a t  several blowing coe f f i c i en ts  and as a func t ion  o f  l i f t  
coe f f i c i en t .  These data a t  zero f l a p  de f l ec t i on  show l i t t l e  e f f e c t  o f  
blowing on d i rect ional  s t a b i l  i ty. 
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Figure 36 presents the same parameters fo r  a f l a p  de f l ec t i on  o f  45 degrees. 
These data ind ica te  an increase i n  d i rec t iona l  s t a b i l i t y  w i t h  blowing. The 
same t rend  i s  seen w i t h  the v e r t i c a l  t a i l  removed i n  Figure 37 i n d i c a t i n g  
t h a t  blowing i s  not  a f f e c t i n g  the t a i l  ef fect iveness appreciably. Figure 38 
presents the 1 atera l  /d i  r e c t i  onal increments o f  the  v e r t i c a l  t a i  1. A smal 1 
increase i n  side force and yawing moment c o e f f i c i e n t s  due t o  blowing i s  
shown. This small increase most l i k e l y  resu l t s  from a ve loc i t y  increase due 
t o  entrainment i n t o  the j e t s .  

The add i t i on  o f  a canard t o  the wing-body does no t  ma te r ia l l y  change the  
s ide fo rce  o r  yawing moment coefficients, bu t  does show a s izable increase 
i n  the dihedral parameter (Cd 1. 

be a t t r i b u t e d  t o  the downwash o f  the canard on the wing. 
39, the increment i s  r e l a t e d  t o  the wing l i f t  loss and the canard distance 
ahead o f  the center o f  wing l i f t .  
canard on the side force and yawing moment parameters. As stated, these 
increments are i ns ign i f i can t .  

This increment can 
P 

As seen i n  F igure 

Figure 40 presents the e f f e c t  o f  the 

3.3 Ground E f fec ts  

Ground e f fec ts  on the 1 ongi t u d i  nal charac ter is t i cs  o f  the propuls ive model 
were invest igated w i t h  and w i thout  the canard. This data i s  the  f i r s t  s e t  
o f  low aspect r a t i o  j e t  f l a p  ground e f f e c t  data general ly avai lable.  Most 
avai 1 ab1 e propul s i  ve w i  ng data was obtained f o r  consi derably h i  gher w i  ng 
aspect r a t i o  conf igurat ions.  

Previous analysis and t e s t i n g  o f  powered conf igurat ions was accomplished t o  
es tab l i sh  a need f o r  removal o f  the  ground boundary l a y e r  by incorpora t ing  a 
moving be l t .  These data have generally shown t h a t  
c o e f f i c i e n t  i s  less  than about two: 

CLr = 2.0 

a p o s i t i v e  l i f t  w i l l  be induced by the ground, see 
Reference 7. I n  addi t ion,  Turner, Reference 8 has 
c o e f f i c i e n t  i s :  

i f  t h e  c i r c u l a t i o n  l i f t  

Stewart and Kuhn, 
shown t h a t  i f  the  l i f t  

CL = 20*h/b 

a moving ground board i s  necessary. Stewart and Kuhn i n  Reference 7 a lso  
showed t h a t  a ground vortex may be encountered outside the  boundaries 
establ ished by Turner. The e f f e c t  o f  t h i s  ground vortex on the l i f t  
c o e f f i c i e n t  was no t  adequately determined i n  Reference 7 because o f  model 
and t e s t  l im i ta t i ons .  The ground vortex was establ ished f o r  j e t  f l a p  
t e s t i n g  a t  l i f t  c o e f f i c i e n t s  o f :  
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Tests o f  the propulsive wing-bo@ a t  these l i f t  c o e f f i c i e n t s  and ground 
prox imi ty  have provided an add i t iona l  i n s i g h t  i n t o  ground ef fects .  The l i f t  
c o e f f i c i e n t  data presented i n  Figure 41 show t h a t  a t  the  h igher  l e v e l s  o f  
blowing a l a rge  negative l i f t  c o e f f i c i e n t  increment i s  rea l i zed  as the  
ground i s  approached. The data shown i n  F igure 41 are w i t h  the ground 
f ixed, bu t  w i t h  the boundary l a y e r  removal operating. Figure 42 presents 
the t h r u s t  removed l i f t  c o e f f i c i e n t  f o r  the  ground e f f e c t  data. 
removed l i f t  c o e f f i c i e n t  data show t h a t  the  t h r u s t  removed, o r  c i r c u l a t i o n  
l i f t  coe f f i c i en t ,  never exceeds two. The previous s tud ies would i n d i c a t e  
t h a t  a small pos i t i ve  ground e f f e c t s  increment would be expected ra the r  than 
the l a rge  negative l i f t  increment shown i n  Figure 41. 
i nd i ca te  t h a t  the increment would be d i f f e r e n t  i f  the  boundary l a y e r  were 
removed by moving the ground be l t .  
propuls ive wing t e s t  appears t o  cor re la te  we1 1 w i t h  the  vortex occurrence 
l i f t  c o e f f i c i e n t  discussed by Stewart and Kuhn i n  Reference 7. Figure 43 
presents a comparison o f  the  vortex formation l i f t  c o e f f i c i e n t  f r o m  
Reference 7 w i th  the l i f t - l o s s  l i f t  c o e f f i c i e n t  o f  the propuls ive wing and 
t o  the moving ground board requi rement observed by Turner i n  the e a r l i e r  
tests.  The vortex and l i f t  loss  occur a t  the same l i f t  c o e f f i c i e n t s  wh i l e  
the Turner data i nd i ca te  a much higher l i f t  c o e f f i c i e n t  p r i o r  t o  ground- 
induced l i f t  loss. 
di f ferences o f  the two sets of data. 

The t h r u s t  

There are no data t o  

The l i f t  loss experienced w i t h  t h i s  

This i s  be l ieved t o  be a r e s u l t  o f  aspect r a t i o  

The e f f e c t  o f  ground prox imi ty  on the p i t ch ing  moment c o e f f i c i e n t  f o r  the  
propuls ive wing i s  presented i n  Figure 44. The data show a l a rge  reduct ion 
i n  the negative p i t ch ing  moment c o e f f i c i e n t  a t  h igh blowing c o e f f i c i e n t s  as 
the ground i s  approached. Thi s character i  s t i  c ind ica tes  t h a t  the  reduct i  on 
o f  l i f t  c o e f f i c i e n t  r e s u l t s  from a l i f t  loss  on the wing o r  a f t  fuselage. 
The center o f  pressure o f  the l i f t  loss  i s  seen t o  be a t  approximately 65 
percent o f  the mean aerociynamic chord (MAC). 

The complete conf igurat ion,  body-canard-wi ng-ver t ica l  t a i  1, produced 
e n t i  r e l y  d i f fe ren t -  incremental ground e f fec ts .  
the l i f t  and p i tch ing  moment coef f ic ients ,  respect ively,  o f  the  body- 
canard-wing-vertical t a i l  conf igurat ion.  The complete conf igura t ion  shows a 
l i f t  increase and an incremental nose down p i t c h i n g  moment a t  the  low ground 
heights and high blowing coef f i c ien ts .  This cha rac te r i s t i c  could r e s u l t  
from a reduction i n  canard downwash and an associated increase i n  wing l i f t  
as the ground i s  approached. 

Figures 45 and 46 present 

The propuls ive wing w i t h  half-span j e t  nozzles was tes ted  w i t h  both moving 
and s ta t ionary  ground boards. Figure 47 presents the  l i f t  c o e f f i c i e n t  f o r  
the half-span blowing j e t  w i t h  the moving and s ta t ionary  be l ts .  The data do 
no t  i nd i ca te  an e f f e c t  o f  the moving b e l t  on the  l i f t  o f  the  blown wing i n  
prox imi ty  o f  the ground. The t h r u s t  removed l i f t  c o e f f i c i e n t  f o r  these 
half-span nozzle data po in ts  show very low l e v e l s  o f  c i r c u l a t i o n  l i f t  
coe f f i c i en t ,  see Figure 48. 
f ree  a i r  was: 

The maximum c i r c u l a t i o n  l i f t  c o e f f i c i e n t  i n  

CL = 1.1 
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Previous invest igat ions i nd i ca te  tha t  t h i s  l i f t  c o e f f i c i e n t  i s  too low t o  
have incurred a negative ground e f f e c t  l i f t  increment. 

F igure 49 presents the e f f e c t  o f  ground prox imi ty  on the l a t e r a l / d i r e c t i o n a l  
cha rac te r i s t i cs  o f  the  wing-body configuration. These data show t h a t  t he  
ground has a small des tab i l i z i ng  e f f e c t  a t  the h igher  blowing coe f f i c i en ts ,  
bu t  t h a t  the blowing-on parameters i n  ground e f f e c t  are s t i l l  s l i g h t l y  more 
s tab le  than the unblown wing-body conf igurat ion.  

The la te ra l /d i rec t i ona l  s t a b i l i t y  o f  the t o t a l  con f igura t ion  
(wing-canard-body) was no t  tested a t  yawed condi t ions.  The only  s i g n i f i c a n t  
d i f fe rence expected would be a decrease i n  the  canard e f f e c t  on the  dihedral  
parameter shown i n  Figure 40 and discussed i n  paragraph 3.2.1. As the 
w i  ng-canard-body conf igurat ion approaches the  ground the canard downwash 
w i l l  be s i g n i f i c a n t l y  reduced and, therefore, the change t o  C l  due t o  the 
canard can be expected t o  be reduced accordingly. P 

3.4 Flow F i e l d  Character is t ics  

The f low f i e l d  o f  the propuls ive wing model was invest igated behind bo th  the 
wing and the canard. 
rake mounted v e r t i c a l l y  as shown i n  Figure 10. 
concurrent w i th  the wing pressure c o e f f i c i e n t  data except f o r  the  ground 
ef fect  studies when the rake was removed t o  prevent accidental contact  with 
the moving be l t .  The rake data consists o f  the l o c a l  v e l o c i t y  and f l o w  
angles a t  the probe locat ions.  When mounted i n  the f i x e d  v e r t i c a l  p o s i t i o n  
behind the  propuls ive wing a s l i c e  o f  the downwash cha rac te r i s t i cs  was 
measured . 

The measurements behind the  wing were made w i t h  the  
These data were taken 

The loca t i on  o f  the j e t  path i s  a major considerat ion i n  determining the  
optimum placement o f  l i f t i n g  surfaces f o r  any conf igurat ion.  
shows the r e l a t i v e  placement o f  the downwash rake and the ca lcu lated wing 
j e t  path f o r  several f l a p  deflect ions. The j e t  path i s  computed by (see 
Reference 9): 

Figure 50 

L 

- -  X - 
where 

Cx = 1 + 0.5 (2) 
a0 = j e t  de f l ec t i on  angle 

to = nozzle gap 
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Figure 51 shows the probe ve loc i t y  f o r  the f lap  de f lec t ions  tested. The 
data are referenced t o  the ca lcu lated j e t  sheet l o c a t i o n  shown i n  Figure 
50. These resul ts  i nd i ca te  t h a t  the ca l cu la t i on  method from Reference 9 
i s  qu i te  accurate f o r  l oca t i ng  the j e t  path. 
w i t h i n  one inch  o f  the predic ted l oca t i on  a t  a p o i n t  twenty-one inches 
downstream o f  the nozzle. 
t h i s  discrepancy. 
chord by a modi f icat ion t o  the j e t  sheet equation i f  a more precise j e t  
1 ocat i  on i s requi red. 

The j e t  center appears t o  be 

The f l ap  chord a f t  o f  the  nozzle may account f o r  
It may be possible t o  account f o r  the e f f e c t  o f  the f l a p  

The flow f i e l d  behind the canard was surveyed f o r  several combinations o f  
f l a p  de f l ec t i on  and blowing coeff ic ient ,  and a t  several long i tud ina l  
pos i t ions  behind the canard. These surveys were made w i t h  the wing 
removed. The canard f l o w  f i e l d  survey informat ion and the complete downwash 
probe data are presented i n  Appendix C of Volume 11. Figure 52 presents the 
f low f i e l d  vectors a t  one loca t i on  downstream o f  the canard w i t h  the canard 
f l a p  def lected 45 degrees. 
surveys r e l a t i v e  t o  the canard and the wing even though the  surveys were 
made w i t h  the wing o f f .  
i s  not  known. 
have some e f f e c t  on the canard wake. The f low survey shown i n  Figure 52 i s  
located i n  f ron t  o f  the wing leading edge. Superimposing the  wing l o c a t i o n  
on Figure 52 shows t h a t  the canard t i p  vortex w i t h  the j e t  blowing i s  
displaced wel l  below the canard plane and w e l l  inboard o f  the canard t i p .  
The canard vortex i s centered on the wing plane d i  r e c t l y  ahead of the wing 
leading edge f o r  t h i s  f l a p  de f lec t ion  and blowing combination. The canard 
j e t  f low i s  displaced inboard and under the wing leading edge r e s u l t i n g  i n  
the r e l a t i v e  large negative in ter ference discussed i n  Section 3.2. 
depicted i n  the f i gu re  presents the ve loc i t y  vector  p ro jec t i on  i n t o  a YZ 
plane a t  a longi tud ina l  l oca t i on  j u s t  ahead o f  the wing. The la rge  vectors 
located from 0 > Z > -18 show the canard j e t  v e l o c i t i e s  and the downwash 
angles associated w i th  the j e t .  The very small vectors located wel l  away 
from the canard and the canard j e t  depict  f lows which are near ly p a r a l l e l  t o  
the f ree  stream. Section 3.2 contains a discussion o f  the same f l o w  
condi t ions and Figure 24 shows the j e t  v e l o c i t i e s  and downwash angles 
pro jected i n  the XZ plane. Note t h a t  the vectors located wel l  away from the  
j e t  tend t o  represent f ree  stream condit ions. 

Figure 53 shows the  loca t ions  o f  the canard 

The e f f e c t  o f  wing c i r c u l a t i o n  on the canard wake 
A t  these very slow speeds the wing c i r c u l a t i o n  w i l l  l i k e l y  

The view 
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SECTION 4.0 

CONCLUSIONS 

Wind tunnel tes ts  o f  a propuls ive wing/canard concept a t  STOL condi t ions 
have invest igated the  use o f  j e t  f l aps  on the  wing and on the canard f o r  
several f l a p  conf igurat ions.  
e f fect  a t  various p i t c h  and yaw angles. 

The model was tes ted  i n  f ree  a i r  and i n  ground 
The data show t h e  fo l l ow ing  resu l t s :  

1. 

2. 

3.  

4. 

5. 

6. 

7. 

8. 

9. 

The wing/canard concept produces s u f f i c i e n t  l i f t  t o  f l y  a t  speeds as low 
as approximately 40 knots a t  12 degrees angle o f  at tack.  

The canard imparts a s i g n i f i c a n t  downward load on the wing. 
downward loading i s  p a r t i c u l a r l y  not iceable a t  45 degrees o f  canard f l a p  
def 1 ec ti on. 

This 

Canard blowing ac ts  as an upper surface blowing j e t  t o  the wing a t  low 
canard f l a p  angles, b u t  the  j e t  impinges on the  wing a t  t he  h igher  
angles o f  f l a p  def lect ion.  

A canard pos i t ioned low r e l a t i v e  t o  the wing i s  p re fe r red  fo r  STOL 
landings whi le  a h igh canard i s  desired f o r  take-of f  and o ther  c r u i s e  
modes which might u t i l i z e  the bene f i c ia l  aspects o f  blowing. The data 
suggest t h a t  t he  h igh canard/low wing re la t i onsh ip  i s  prefer red as the  
best compromise f o r  ove ra l l  performance. 

The resu l ts  o f  canard in te r fe rence inves t iga t ions  suggest t h a t  a 
three-surface conf igura t ion  has po ten t i a l  f o r  STOL f i g h t e r  appl icat ions.  

Ground proximity t e s t s  show t h a t  a s i g n i f i c a n t  l i f t  l o s s  i s  experienced 
w i t h  the wing alone. 

The large negative l i f t  increment induced by ground prox imi ty  f o r  the  
wing-alone conf igura t ion  a t  l a rge  blowing c o e f f i c i e n t s  occurs a t  a lower 
value than would have been expected based on ava i l ab le  h igher  aspect 
r a t i o  data. 
be inf luenced by the  s ta t ionary  b e l t  used f o r  these tes ts .  
o f  s ta t ionary and moving b e l t  t e s t  r e s u l t s  show no e f f e c t  o f  b e l t  
speed. 
which produced very low c i r c u l a t i o n  l i f t  coe f f i c i en ts .  

The l i f t  loss may be caused by a ground vortex which could 

However, these t e s t s  were performed w i t h  a half-span j e t  nozzle 

Comparison 

Ground proximity t e s t s  o f  the wing and canard demonstrate a s i g n i f i c a n t  
l i f t  increase a t  low model heights and l a r g e  f l a p  def lect ions.  These 
charac ter is t i cs  may r e s u l t  from the reduct ion o f  canard downwash onto 
the wing. 

Canard flow f i e l d  surveys i nd i ca te  t h a t  the  canard t i p  vor tex i n te rsec ts  
the model wing plane f o r  the  cond i t ion  o f  l a r g e  f l a p  de f lec t ions  and 
blowing. 
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SECTION 5.0 

RECOMMENDATIONS 

1. A three-surface propuls ive wing concept (canard, wing, hor izonta l  t a i l  ) 
should be invest igated experimentally. 

2. The low aspect r a t i o  j e t  f l a p  wing should be tested i n  ground e f f e c t  a t  
maximum l ift c o e f f i c i e n t  and w i th  a moving ground b e l t  t o  determine the  
a p p l i c a b i l i t y  o f  the Turner c r i t e r i a  f o r  a moving be l t .  

The low and h igh speed data from the propuls ive wing/canard concept 
should be analyzed more completely. 

3. 
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